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A wide family of methods is described for sampling in the canonical ensemble. The Bulgac-Kusnezov
method is generalized to include a more complicated coupling structure and stochastic perturbations. It is
shown that a controlled fluctuation of the potential surface or force field in a molecular model may be used as
part of a sampling method �instead of the more standard friction or driving term�. Numerical experiments
demonstrate that the family includes methods that are effective for recovering canonical averages.
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I. INTRODUCTION

The challenge of accurately sampling a complex molecu-
lar landscape is persistent and well-documented. Many inter-
esting approaches have been suggested for addressing this
problem �see, e.g., �1,2� for some recent examples�, yet it
remains a major challenge for simulation based strategies in,
for example, biomolecular modeling �3� and computational
materials science. There is strong demand for concepts and
methodology in this area. In particular it is valuable to have
a comprehensive framework for modifying Hamiltonian dy-
namics in order that the canonical measure may be obtained
from trajectory averages, i.e., thermostats, either based on
dynamical or mixed stochastic-dynamical perturbation.

In this article, we describe a family of this type. Bulgac-
Kusnezov �4� methods are closed form systems in extended
phase space with �typically non-Hamiltonian� vector fields.
This article provides a generalization of Bulgac-Kusnezov,
with a more flexible coupling, and the addition of stochastic
noise, that subsumes many existing thermostat methods, in-
cluding methods such as Langevin dynamics and the recently
proposed Nosé-Hoover-Langevin �NHL� method �5,6� that
introduce stochastic noise to stabilize the canonical measure.

As an example and to provide motivation for this family,
we are able to demonstrate some alternative types of meth-
ods, including a technique that allows thermal control based
on activation of a force modification by an auxiliary variable.
Effectively we replace the usual canonical sampling of a
given system �by following perturbed trajectories in phase
space� by a method based on trajectories in a potential en-
ergy surface is that modified dynamically �in such a way that
canonical sampling is achieved�. While we do not claim that
the approach is better than existing methods such as Lange-
vin dynamics, it is shown to be different and to have similar
accuracy �with respect to averages� and convergence proper-
ties in a double well example.

II. CANONICAL MEASURE INVARIANT DYNAMICS

Our starting point is a Hamiltonian system

ż = J � H�z� , �1�

on a 2N dimensional phase space M2N, with J assumed to be
a constant, nondegenerate skew-symmetric matrix. The most

obvious applications are to molecular dynamics in an empiri-
cal potential U, with Hamiltonian �energy function� defined
in terms of nuclear positions and momenta,

H =
1

2�
i=1

N

mi
−1pi

2 + U�q1,q2, . . . ,qN� ,

but other applications are also of interest. Our goal in this
article is to use dynamical or stochastic-dynamical paths to
recover canonically weighted averages, i.e., spatial averages
with respect to the Gibbs-Boltzmann �canonical� measure
d��=e−�Hd2Nz, where �−1=kBT is the desired scaled tem-
perature. �Our treatment could be extended to arbitrary
smooth measures, following �7�.� Note that the dynamical
system �1� preserves the Hamiltonian, hence any function of
the Hamiltonian, hence the canonical measure. The problem
is that it provides no specificity, thus an initial distribution in
phase space will typically decay to a collection of isolated
components and averages taken along trajectories will not
converge to canonical phase space averages.

In general, the idea of a dynamical thermostat is to re-
place the Hamiltonian dynamics �1� by a system, usually in
an extended phase space, designed so that averages with re-
spect to the augmented system are easily mapped to canoni-
cal averages.

The method of Bulgac and Kusnezov �BK� �4� is of this
type. Their proposal replaces the microcanonical system by

ż = J � H�z� − �
i=1

k

gi���i�Fi�z� , �2�

where, for i=1,2 , . . . ,k,

�̇i = ��zH · Fi − �−1�z · Fi�/�i, �3�

with the functions gi :R→R and Fi :R2N→R2N arbitrary
smooth functions, and �i, i=1, . . . ,k constant coefficients. It
is easily demonstrated that under certain conditions on the
expression in Eq. �3� �see �8�� this dynamics preserves an
augmented canonical measure of the form
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d�̃�z,�� = �� exp�− ��
i=1

k

gi��i��d2Nzdk� � �̃d2Nzdk� .

�4�

Specifically, one constructs the Liouville operator of the ex-
tended system

L� = − �z · ��ż� − �� · ���̇� , �5�

and it is then a straightforward calculation to show that L�̃
=0. This means that �̃ is stationary for the extended system.
One assumes the functions gi tend to +� sufficiently rapidly,
so that “integrating out” with respect to the auxiliary vari-
ables, we would hope to recover canonically weighted aver-
ages of functions of the physical variables. Unlike Hamil-
tonian dynamics �which also preserves the canonical
measure�, the BK method does not preserve arbitrary func-
tions of the Hamiltonian, thus it achieves some additional
specificity of the measure. However, there are no proofs of
ergodicity; it is not known in which cases �̃aug is the unique
invariant density for the dynamical system and, in some spe-
cific cases, ergodicity is known to fail, see �9�. On the other
hand, in practice, the method appears to reproduce canonical
averages with some accuracy when the underlying physical
dynamics is itself ergodic �or nearly so�. It is thus common to
work with dynamical thermostats under an assumption of
ergodicity �even though this is unlikely to hold in the strict
sense� in order to obtain approximation results useful in
practical calculation.

The BK method includes some popular schemes for mo-
lecular dynamics such as Nosé-Hoover dynamics �10,11�.
For a system described by a Hamiltonian H=H�q , p�
= pTM−1p /2+U�q�, M a N�N constant mass matrix, the
Nosé-Hoover method consists of the extension

q̇ = M−1p , �6�

ṗ = −
�H

�q
− �p , �7�

�̇ = �−1�pTM−1p − N�−1� , �8�

based on a single additional variable. Within the BK frame-
work one can find some schemes which have the potential to
accelerate sampling, including configurational thermostats
�see, e.g., �5,12��.

Observe that, regardless of what choice is made for the
functions gi in Eqs. �2� and �3�, the average of gi� is zero:

	gi�
 =

�
R

gi���i�e−�gi��i�d�i

�
R

e−�gi��i�d�i

= 0, �9�

upon integrating the numerator and using the fact that gi
tends to +� as �→ 	�.

III. GENERALIZED BULGAC-KUSNEZOV METHODS

We consider here extensions on a space M2N�Lk, defined
by equations of the form

ż = u�z,�� , �10�

�̇ = v�z,�� . �11�

Assuming that Eq. �10� and �11� has an invariant measure
d�̃, we ask that

�
M2N�Lk


�T�z,���d�̃ = �
M2N


�z�d��, �12�

for some appropriate choice of the transformation T. The
family �10� and �11� includes Nosé-Hoover Chains �13�, and
other previous generalizations of Nosé-Hoover �14�. To see
that the formulation is more general than Bulgac-Kusnezov,
we observe that it includes methods with complicated multi-
variate nonlinear dependencies among the auxiliary vari-
ables, depending on the form of v, whereas Bulgac-
Kusnezov methods have a simpler structure, v=v�z�. It is
precisely this freedom that we wish to exploit. In fact, the
family �10� and �11� includes even the Hamiltonian Nosé-
Poincaré scheme �15� which does not rely on a smooth prod-
uct extension of the canonical measure; in this approach,

H̃NP = �1�H�q,p/�1� +
�2

2

2�
+ N�−1 ln �1 − Ẽ� . �13�

and we define a Dirac measure in the extended energy:

d�̃ = �H̃NPd�1d�2dNqdNp . �14�

Then one easily shows �15�, with Lk=R+�R, that

�
R2N�Lk

f�q,p/�1�d�̃ = �
R2N

f�q,p�d��. �15�

Under the essential ergodicity assumption, sampling of the
extended HNP Hamiltonian can be performed by viewing �1
and �2 as conjugate symplectic �canonical� variables in Eq.
�13� and using Hamiltonian dynamics to generate
“pseudomicrocanonical” sampling trajectories. Other, more
complicated extended systems based on extended Hamilto-
nians have been constructed �see, e.g., �16�� with the aim of
improving the convergence of averages.

We are for the most part interested in smooth measures,
i.e., we assume that, for some g :Rk→R, our extended mea-
sure has the density �̃=�� exp�−�g����. From direct compu-
tation, we must have

L�̃ = − �z · ��̃u� − �� · ��̃v� = 0. �16�

Then it follows that

u · �zH − �−1�z · u + ��g · v − �−1�� · v � 0. �17�

As previously discussed, if g suitably chosen, it will be
possible to compute averages with respect to the invariant
density, and, in particular, we may obtain canonically
weighted phase space averages by integrating out with re-
spect to all the �i.
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A. Stochastic perturbation

In order to provide ergodicity, we introduce diffusion in
the density propagator by adding stochastic noise and dissi-
pation to the dynamics of the extended system �10� and �11�.
We may allow noise in either the physical or auxiliary vari-
ables:

ż = u�z,�� − �zz + �2�−1�z
1/2Ẇz, �18�

�̇ = v�z,�� − ��� + �2�−1��
1/2Ẇ�, �19�

where Wz and W� are 2N and k-dimensional vectors of inde-
pendent Wiener processes and �z and �� are matrices which
define the coupling of the stochastic terms to the physical
and auxiliary variables. Typically the coupling matrices
would be taken to be constant diagonal matrices, or projec-
tions onto the physical momenta, as in the case of Langevin
dynamics, or even a scalar; there are many alternatives. �z
might be obtained from physical principles to represent fric-
tion needed to represent neglected degrees of freedom, on the
other hand �� is likely to consist of artificial parameters.

If condition �17� holds, and if the stochastic part

�− �zz + �2�−1�z
1/2Ẇz,− ��� + �2�−1��

1/2Ẇ�� , �20�

is chosen to preserve the reduced canonical measure with
respect to each set of variables, then �18� and �19� preserves
the canonical measure. This follows directly from the linear
structure of the Fokker-Planck equation.

B. Nosé-Hoover-Langevin thermostat

As an example of an existing scheme that combines dy-
namical extension and stochastic perturbation in the auxiliary
variables, we mention the NHL method studied in �5,6�. We
assume we have a molecular system for which the energy
may be written H�q , p�= pTM−1p /2+U�q�. A variant of the
Nosé-Hoover-Langevin method may be written

q̇ = M−1p , �21�

ṗ = − �U − �p , �22�

�̇ = pTM−1p − N�−1 − �� + �2�−1�−1Ẇ , �23�

where W is a �scalar� Wiener process. This method includes
a Nosé-Hoover-like control law to control kinetic energy; it
replaces the artificial use of a thermostat chain �13� by a
single stochastic process. The augmented distribution has the
form �̃=��e−��2/2.

IV. SAMPLING METHODS BASED ON FORCE
MODIFICATION

It would be desirable to be able to introduce a flexible
modification of the force field in order to change the way
equilibrium is reached in molecular simulation. Such a
mechanism could be valuable in the design of enhanced sam-
pling strategies. Here we present a preliminary outline of
such a technique which is based on viewing the given force

field as a slice of a projected force field in an extended con-
figurational space. The extra freedom may provide ways to
avoid ergodicity barriers.

Consider replacing the conservative force F�q�=−�U�q�
in a molecular system by a function F̃�q ,��, where � is
driven by an �artificial� dynamical process. The equations of
motion would be

q̇ = M−1p , �24�

ṗ = F̃�q,�� , �25�

�̇ = h�q,p,�� . �26�

Assuming a simple extension of the canonical density, e.g.,
�̃=��e−��2/2�, we may easily derive the following solution
for h,

h�q,p,�� = �e��2/2��
0

�

e−�s2/2��F̃�q,s� · �M−1p�ds ,

�27�

where �F̃= F̃−F. �This is obtained by writing out the differ-
ential equation satisfied by h, then solving it in the standard
way using an integrating factor.�

One possibility is to imagine the graph of U�q� as being
embedded within a smoothed landscape in the extended vari-
able. We refer to this as the embedded force method �EFM�.
For example, we could set Ũ�q ,��=����U�q�, then take F̃

=−�qŨ, in which case Eq. �27� reduces to

h�q,p,�� = − ������qU�q� · �M−1p� , �28�

for a scalar function �. The relationship between � and �
being

� = �� − ���� + 1. �29�

For some choices of � we may invert this relationship to
derive the appropriate choice of �. For example take the
function

���� = 1 − C2 arctan2�C1�2� , �30�

for suitable constants C1 ,C2. In this case it is possible to
embed the physical potential in a landscape that could poten-
tially enable more alternative routes for exploration �see Fig.
1�. Here � is recovered by inverting �29�,

���� = e���2/2��
0

�

e−�s2/2���s�ds . �31�

For polynomial � a recurrence is available to solve this in-
tegral exactly, but in general cases this would need to be
done by numerical quadratures. Experiments with this
scheme showed numerical instability due to the presence of
the rapidly growing exponential term.

The simplest nontrivial analytical solution is

���� = ���2, ���� = − � . �32�

Ergodicity in the EFM method may be a practical issue,
since EFM only receives contact with stochastic perturbation
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via the dependence of the force field on �. If F̃� vanishes in
a certain region, the system must rely on mixing present in
the physical dynamics. The system can be combined with
additional thermostating devices. For example, Eqs.
�24�–�26� would likely be adapted to include a stochastic
term to drive the auxiliary variable to equilibrium,

q̇ = M−1p , �33�

ṗ = F̃�q,�� , �34�

�̇ = h�q,p,�� − �� + �2��−1Ẇ . �35�

It may also be desirable to complement the given scheme by
Langevin dynamics in the physical variables or a Nosé-
Hoover-Langevin thermostat.

V. NUMERICAL EXPERIMENTS

We present in this section simple numerical experiments
to examine some instances of the generalized Bulgac-
Kusnezov schemes against the “gold standard” of stochastic
sampling methods, Langevin dynamics. The goal is to com-
pare the trajectories obtained from the different methods in
order to gain insight into the approach to equilibrium.

Comparisons were made between the embedded force
method �of the previous section�, Nosé-Hoover-Langevin
�=1� and Langevin dynamics. In running comparisons, we
have had to select a number of parameters �step sizes, cou-
pling coefficients� in each method. It is challenging to study
all values of the parameters simultaneously for all methods.
As our goal is just to test the recovery of canonical averages
in a more flexible framework such an exercise is in any event
not particularly enlightening �future work will attempt to es-
tablish the usefulness of the described methodology in appli-
cations such as biomolecular modeling�. The limited results
presented here therefore cannot be taken to provide a com-
prehensive comparison of the different methods, but they do
provide “proof of concept” for the approach presented in this
article. In our experiments, we studied a double well poten-
tial,

U�q� = �q2 − 1�2. �36�

We set kT=0.15; as the barrier is of height 1, this provided a
reasonably challenging example for studying the different
methods. The system was initialized using random points in
the left basin and with a small initial velocity. The challenge
was then to observe accurate sampling of both basins.

All the formulations under study involve stochastic per-
turbations. Several recent articles have discussed the numeri-
cal treatment of stochastic dynamics used in molecular dy-
namics �17,18�, but consensus on the best method currently
available has not been reached. In comparisons, we used the
stochastic position verlet �SPV� method from �18�. A variety
�three� other recently proposed methods for Langevin dy-
namics were implemented and tested but in the experiments
SPV proved be the best of the methods and was certainly
adequate for our purposes. The SPV method is given in the
Appendix.

For the embedded force method of Sec. IV, we chose

Ũ�q,�� = U�q� , �q� � 1

�1 − ��2�U�q� , �q� � 1,
� �37�

This leads to

h�q,p,�� = 0, �q� � 1

��U��q�p , �q� � 1,
� �38�

following the method of Sec. IV. In the embedded force
method, we augmented the equations by a stochastic pertur-
bation of �, as in Eqs. �33�–�35� and we also added a Nosé-
Hoover-Langevin thermostat to enhance ergodicity �as it is
possible otherwise to find some orbits for which the thermo-
statting variables do not interact at all with the physical ones�
however, we chose a very small value of , =0.001 in order
to verify that the performance was not just a consequence of
the NHL device. �We verified that with =0.001 in the pure
NHL method, there are almost no crossings between basins.�
The random friction term was fixed for all noise processes in
all runs at �=1.0. The step size for all simulations was fixed
at h=0.05.

The first observation is that the three methods produce
trajectories with very different characteristics. Although all
three methods incorporate stochastic perturbation, the Lange-
vin trajectories are much less smooth than those produced by
the other two methods. The NHL trajectories are smooth and
the EFM dynamics behaves similarly to Langevin dynamics
when p�0. Representative trajectories are shown in Fig. 2.
We can also see from these figures that NHL and EFM ap-
pear to provide a poorer sampling of the saddle point com-
pared to Langevin dynamics.

All three methods produce correct sampling of the canoni-
cal measure. For each method we computed 7 runs of 50 M
time steps, reducing sampling errors to less than 5% for each
method. Configurational sampling �comparing histograms of
positions against the predicted densities� in one sampling run
is shown for each method in Fig. 3.

Finally, we also looked at convergence of the methods in
terms of the occupancy time of the right basin. Computing
96 trajectories of length 5 M for each method we calculated

0

1

2

0
0.5

1
1.5

0

0.5

1

1.5

2

q

FIG. 1. �Color online� Graph of Ũ�q ,��=����U�q� where U is a
double well and ����= � 2

�arctan�100�2��2. The slice along �=0 rep-
resents the original potential, which is also a shift of the effective
free energy.
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means and standard deviations. Figure 4 shows the graphs of
the mean �bold solid� and standard deviation �bold dashed�
curves against light curves showing the behavior for each
individual run. Although differences among the methods are
somewhat subtle, it seems that EFM eliminated outliers
present in both the other methods and had, therefore, a
slightly smaller standard deviation. The reader is again cau-
tioned that different parameter choices and different problem
choices may impact the relative performance of the methods.

VI. CONCLUSION

We have demonstrated that the Bulgac-Kusnezov frame-
work for sampling the canonical ensemble may be general-
ized to include a more complicated interaction among artifi-

cial variables and/or stochastic perturbations. We have also
obtained, within this framework, a method that thermally
activates part of the force field in order to achieve canonical
sampling. The method has been tested and compared with
Langevin dynamics, to a limited extent, and performs well in
sampling of a double well, providing proof of concept. The
obvious challenge is to employ this method to thermostat
some more relevant systems arising in materials or biological
applications.
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APPENDIX

For Langevin dynamics, we obtained good results with
the SPV method �18�, which is a splitting method which
reduces to Verlet in the absence of stochastic noise ��=0�.
This scheme is shown to give second order accuracy for
moments. The formulas for the SPV step are as follows:

FIG. 2. �Color online� Trajectories produced by three thermo-
statting methods for the double well model: Nosé-Hoover-Langevin
�top�, Langevin dynamics �center�, and embedded force method
�lower�.
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FIG. 3. �Color online� Sampling of the configurational density
using each of the three methods. �NHL, top; Langevin, center; and
EFM, lower� �Each method exhibits random error, even in 50 M
steps, so precise comparisons based on these sample trajectories
should not be inferred.�
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q = q +
1

2
hM−1p ,

p = exp�− h��p −
1 − exp�− h��

�
� U

+ ���1 − exp�− 2�h��M1/2R ,

q = q +
1

2
hM−1p .

This method is second order for moments. Here �=kT.

The above method is quasisymplectic in the sense of �19�.
For the EFM and Nosé-Hoover-Langevin, the time step was
defined by

p = p −
1

2
h � �Ū�q� + �Û�q�� −

1

2
h�1 − ���−1�2 � Û�q� ,

q = q +
1

2
hM−1p ,

p = e−h�/2p ,

� = exp�−
1

2
h�−1p · M−1 � Û�q��� ,

� = � +
h

2
�pTM−1p − N�� ,

� = exp�− h��� + ���−1�1 − e−2�h�R�,

� = exp�− h��� + ���−1�1 − e−2�h�R�,

� = � +
h

2
�pTM−1p − N�� ,

� = exp�−
1

2
h�−1p · M−1 � Û�q��� ,

p = e−h�/2p ,

q = q +
1

2
hM−1p ,

p = p −
1

2
h � �Ū�q� + �Û�q�� −

1

2
h�−1�2 � Û�q� ,

where R� and R� are two independent standard normally dis-
tributed random numbers, �� and �� are constants controlling
the two noise processes, and ��=�2�−1�� and ��=�2�−1��.
The parameters  and � control which method this is: if �
=1 we have Nosé-Hoover-Langevin. With =0, we have a
pure EFM thermostat. For �0, ��1 we have a combina-
tion of the two methods.
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